Description
|
ESCHER (Exploration of Saline Cryospheric Habitats with Europa Relevance) is a NASA funded PSTAR (Planetary Science and Technology from Analog Research) program with the general geophysical goals of characterizing the subglacial environment of Devon Ice Cap in Nunavut, Canada as a potential planetary analog. The project seeks to gather additional evidence for unique chemistry in the subglacial hydrological system and to further the technical development of the scientific instrumentation. ESCHER represents the first field deployment of a multi-polarization radar system on an A-Star 350 B2 helicopter platform. This is the sixth polar deployment of this helicopter geophysical system, and the first in the arctic. The previous helicopter-based systems expeditions were KRT1, KRT2, ASE2, ASE3, ASE4. Similar results for ASE3 are described in Pierce et al, 2023, and Pierce et al, 2024.
The science goals include characterizing the subglacial environment from the summit of Devon Ice Cap to Sverdrup Glacier’s marine termination. The study area includes three linked geographical regions: i) The summit area where Rutishauser et al. (2020), presented further evidence for the existence of fluid at the base of Devon Ice Cap; ii) the shoulder region of the ice cap, just upstream of the ice flow that enters the outlet valleys of Fox and Sverdrup Glaciers. This region includes the hypothesized distributed hydrological system that transitions into channelized geometry, and iii) The Sverdrup/Fox valley glaciers, tidewater terminus, and locations of subglacial discharge. The study region also includes the upper catchment of the Crocker Bay Glaciers and some of the western land terminating flanks of the ice cap.
All data in this collection is derived from a multipolarization version of the Helicopter Radar (HERA) system (Lindzey et al., 2017, 2022). Included in this dataset are the Level 2 time registered geophysical observables for the specific lines mentioned in Pierce et al., (2024); ice thickness, partial bed reflectivity, surface reflectivity, bed and surface elevation derived both from incoherent processing (IR2HI2) and focused processing (IRFOC2; Peters et al., 2007); no multipolarization processing is included here. Also included is specularity content (IRSPC2; Schroeder et al., 2014, Young et al, 2016).
Data consists of ASCII tab delimited tables, with header describing the columns and key metadata on a per transect basis. Images showing simple maps of values are also included.
The following transects are included:
- DEV3/PER0a/Y79a
- DEV3/PER0a/Y80a
- DEV3/PER0a/Y81a
- DEV3/PER0a/Y82a
- DEV3/PER0a/Y83a
- DEV3/PER0a/Y84a
- DEV3/PER0a/Y85a
- DEV3/PER0a/Y86a
- DEV3/PER0a/Y87a
References:
- Pierce, C., 2024, Advanced Analysis of the Sub-Glacial Environment Using Radar Echo Sounding Simulations, Ph. D. Thesis, Montana State University
- Pierce, C., Gerekos, C., Skidmore, M., Beem, L., Blankenship, D., Lee, W. S., Adams, E., Lee, C.-K., and Stutz, J., 2024, Characterizing sub-glacial hydrology using radar simulations, The Cryosphere, 18, 4, 1495--1515, 10.5194/tc-18-1495-2024
- Pierce, C., Skidmore, M., Beem, L., Blankenship, D., Adams, E., and Gerekos, C., 2024, Exploring canyons beneath Devon Ice Cap for sub-glacial drainage using radar and thermodynamic modeling, Journal Of Glaciology, 1--18, 10.1017/jog.2024.49
- Lindzey, L., Quartini, E., Buhl, D., Blankenship, D., Richter, T., Greenbaum, J., and Young, D., 2017, KRT1/LGV1 Season Field Report, 237 10.26153/tsw/11620
- Lindzey, L. E., Beem, L. H., Young, D. A., Quartini, E., Blankenship, D. D., Lee, C.-K., Lee, W. S., Lee, J. I., and Lee, J., 2020, Aerogeophysical characterization of an active subglacial lake system in the David Glacier catchment, Antarctica, The Cryosphere, 14, 7, 2217--2233, 10.5194/tc-14-2217-2020
- Peters, M. E., Blankenship, D. D., Carter, S. P., Young, D. A., Kempf, S. D., and Holt, J. W., 2007, Along-track Focusing of Airborne Radar Sounding Data From West Antarctica for Improving Basal Reflection Analysis and Layer Detection, IEEE Transactions On Geoscience And Remote Sensing, 45, 9, 2725-2736, 10.1109/TGRS.2007.897416
- Rutishauser, A., Blankenship, D. D., Young, D. A., Wolfenbarger, N. S., Beem, L. H., Skidmore, M. L., Dubnick, A., and Criscitiello, A. S., 2022, Radar sounding survey over Devon Ice Cap indicates the potential for a diverse hypersaline subglacial hydrological environment, The Cryosphere, 16, 379-395, https://doi.org/10.5194/tc-16-379-2022
- Schroeder, D. M., Blankenship, D. D., Raney, R. K., and Grima, C., 2015, Estimating subglacial water geometry using radar bed echo specularity: application to Thwaites Glacier, West Antarctica, IEEE Geoscience And Remote Sensing Letters, 12, 3, 443-447, 10.1109/LGRS.2014.2337878
- Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and Quartini, E., 2016, The distribution of basal water between Antarctic subglacial lakes from radar sounding, Philosophical Transactions Of The Royal Society A, 374, 20140297, 1-21, 10.1098/rsta.2014.0297
|